Abstract
Coronavirus Disease 2019 (COVID-19) threatens to overwhelm our medical infrastructure at the regional level causing spikes in mortality rates because of shortages of critical equipment, like ventilators. Fortunately, with the recent development and widespread deployment of small-scale manufacturing technologies like RepRap-class 3-D printers and open source microcontrollers, mass distributed manufacturing of ventilators has the potential to overcome medical supply shortages. In this study, after providing a background on ventilators, the academic literature is reviewed to find the existing and already openly-published, vetted designs for ventilators systems. These articles are analyzed to determine if the designs are open source both in spirit (license) as well as practical details (e.g. possessing accessible design source files, bill of materials, assembly instructions, wiring diagrams, firmware and software as well as operation and calibration instructions). Next, the existing Internet and gray literature are reviewed for open source ventilator projects and designs. The results of this review found that the tested and peer-reviewed systems lacked complete documentation and the open systems that were documented were either at the very early stages of design (sometimes without even a prototype) and were essentially only basically tested (if at all). With the considerably larger motivation of an ongoing pandemic, it is assumed these projects will garner greater attention and resources to make significant progress to reach a functional and easily-replicated system. There is a large amount of future work needed to move open source ventilators up to the level considered scientific-grade equipment, and even further work needed to reach medical-grade hardware. Future work is needed to achieve the potential of this approach by developing policies, updating regulations, and securing funding mechanisms for the development and testing of open source ventilators for both the current COVID19 pandemic as well as for future pandemics and for everyday use in low-resource settings.

( Open Access Paper )

(Visited 102 times, 1 visits today)